

 DigitCult | Scientific Journal on Digital Cultures

Published 2 May 2021

Correspondence should be addressed to Pierluigi Dalla Rosa. Email: me@pierdr.com

DigitCult, Scientific Journal on Digital Cultures is an academic journal of international scope, peer-
reviewed and open access, aiming to value international research and to present current debate on digital
culture, technological innovation and social change. ISSN: 2531-5994. URL: http://www.digitcult.it

Copyright rests with the authors. This work is released under a Creative Commons
Attribution (IT) Licence, version 3.0. For details please see http://creativecommons.org/
licenses/by/3.0/it/

DigitCult 89 http://dx.doi.org/10.53136/979125994120639
2020, Vol. 5, Iss. 2, 89–97. DOI: 10.53136/979125994120639

Prototyping Spatial Interactions

Abstract
A growing field in the interaction design practice is the domain of connected and interactive spaces.
The idea of ubiquitous computing, that was originated in the late 1980s and the beginning of the
1990s, is now seeking maturity, and technology trajectories have helped materialize the basic
prerequisites for the proliferation of spatial computing. This paper illustrates how the design process
for interactive environments can benefit from an emerging set of methodologies and tools, that is the
physical counterpart for the successful creation of human-centered interactive experiences in space.
When creating interactive spaces, a designer needs to take into consideration new dimensions, like
the flow of users within the space, the spatial context, and a new set of sensors and actuators that go
well beyond screens, keyboards, mice, or controllers. Unlike other interaction design domains, there is
not a defined device, like a smartphone or personal computer, but instead, the technologies of spatial
computing are a collection of distributed devices, sensors, and actuators. Due to this configuration the
implementation and prototyping of interactive environments requires new tools to deal with the
complexity of non-standard components to ease the design process and allow for sketching in
hardware and software at scale. With ad hoc software and hardware designed with the purpose of
standardizing and making accessible these components, a design practitioner can implement
prototypes of interactive and connected spaces to gather inspirations, insights, and validation before
investing in creating the complete experience. This paper explains how the process of designing with
such tools will transform the work and the outcome of the interaction designer that explores the
forefront domains of connected environments, ubiquitous media, and spatial computing.

Pierluigi Dalla Rosa
http://www.pierdr.com/

mailto:me@pierdr.com
http://www.digitcult.it/
http://creativecommons.org/licenses/by/3.0/it/
http://creativecommons.org/licenses/by/3.0/it/
http://dx.doi.org/10.53136/979125994120639

90 | Prototyping Spatial Interactions doi:10.53136/979125994120639

DigitCult | Scientific Journal on Digital Cultures

Introduction

Everyone that got in contact with digital technologies experienced the fruits of interaction
design. From remote villages to tier-one cities, from smartphones to elevators, digital
technologies spread into everyday objects. Personal digital devices, first computers than
smartphones, became important and indispensable companions to contemporary life, but are
just one instantiation of the digital.

Nicholas Negroponte predicted the spread of computation outside computers already in
1998 when he stated that "computers, as we know them today, will be boring, and disappear
into things that are first and foremost something else: smart nails, self-cleaning shirts, driverless
cars, therapeutic Barbie dolls, intelligent doorknobs [...] Computers will be a sweeping yet
invisible part of our everyday lives: We’ll live in them, wear them, even eat them".

This trajectory is materializing with rising of embedded computing and connected objects.
For example, large consumer electronic manufacturers, today, have in their product lines home
assistants, like the Apple Home Pod or Google Home. These are new media touch-points, that
blend the digital world with new forms of interactions in spaces. The fact that there are
numerous players in the field of connected appliances is an indicator of the maturity of a set of
technologies that are enabling computation to spread outside traditional devices like computers
and smartphones and become part of objects, like the iRobot Roomba, an autonomous vacuum
cleaner, or Philips Hue, a smart lighting system where light bulbs with a micro-controller and
wireless connectivity can be programmed from anywhere.

The spread of low-cost networked micro-controllers allows for new possibilities not just in
single connected objects but in creating spaces that are characterized by distributed touch-
points, enabling multi-user interaction in physical space.

There are many examples of these if we take into consideration interactive museum
exhibitions, interactive experiential marketing campaigns, escape rooms, or alternate reality
games. More and more of these experiences pioneered in public space are now permeating
people's homes as described in the article of December 2020 in the Scientific American where
spatial computing is quoted as one of the top emerging technologies and is quoed to be at the
heart of the ongoing convergence of the physical and digital worlds (Lathan 2020).

Computing Systems and Spatial Interactions

Every computing system, in the most essential form, has three components: input, processing,
output. The Analytical Engine by Charles Babbage, designed in 1837, already manifested these
components; in the description of Babbage's computer the input, consisting of programs and
data, was to be provided to the machine via punched cards [...]. For output, the machine would
have a printer, a curve plotter, and a bell (Collier 1970).

Everyone that uses a computer today is using a system that conforms to this model, having
inputs like the keyboard and mouse, and outputs like a monitor or a printer, while the processing
happens inside the computing unit. This model has roots in the early days of computing and it is
commonly referred as the Von Neumann architecture (Goldstine 1993).

It is possible to apply the label spatial computing to those instances of digital systems that
don’t have a predefined set of inputs and outputs and break the paradigm of personal digital
devices. Aiming to define a growing domain that has divergent characteristics in terms of the
user interface but shared digital architecture compared to current digital systems. The wider
consequences of the reach, memorability, and engagement of spatial computing systems are a
long way off the scope of this paper, so within it, this classification will be used mainly for
technical utility.

When designing spatial computing systems without a predefined set of inputs and outputs
the focus is on understanding the affordances, mental model, and general usability of different
touch-points that populate new devices or interactive spaces; the challenge is also an
opportunity to redefine new forms of inputs and outputs that suit the problem, the destination
and the purpose of the new digital structure.

doi:10.53136/979125994120639 Pierluigi Dalla Rosa | 91

DigitCult | Scientific Journal on Digital Cultures

A Prototyping Tool for Interactive Spaces

Interaction designers sketch with prototyping tools to get inspiration and test their ideas, before
delegating engineering teams the full implementing of a final solution.

When designing interactive spaces, the ideal process follows a similar path, with simulation
and prototyping ahead of implementation, but the different nature of interactive spaces,
compared with digital products, make it more time consuming and with a higher degree of
complexity.

Prototyping tools can help the designer to simulate the experience, or parts of it, so that
some test-users can be immersed in the simulated experience and provide early feedback and
inspiration to the design team.

The first pioneers to create experimental tools for interactive spaces have been John
Underkoffler and Hiroshi Ishii, that started expanding the role of computation with projection
mapping; they used a projector to display a computer image that is mapped to real, physical
features. One example is their project Urp, developed at MIT, and it is an urban planning tool
that shows information about shadows, proximity, reflections, wind flow and visual space using
small architectural models with a projection layered on the topographical surfaces.

A movement of designers just after the web-bubble, started hacking keyboards to create
physical button that can help create physical interactions. The design consultancy Tellart LLC,
pioneered this methodology in RISD, where they taught industrial design students how to use
standard electronics to sketch in hardware. The students hacked keyboards to create physical
actuation in order to open and close a circuit, triggering keypresses on a personal computer, or
connected RFID readers as inputs for a webpage (Noble, 2012).

Today there are different electronic components that simulate a keyboard input. The
makeymakey, iPac boards, Bare Conductive touch-boards or Playtronica boards.

These devices allow to simulate keypresses; these keypresses can be used to trigger a
slideshow software, like PowerPoint or Keynote, or to play or sequence media, like video or
audio. The designer, utilizing these boards, can focus on the creation of physical triggers for an
interactive space. The physical space is rich of triggers like a person sitting on a chair, a door
opening, a person touching a metal object, a loud sound, a change in light intensity, a gas
detected in the air. In this paper physical triggers will be simply referred as buttons.

Buttons and projections are great first steps to prototype interactive spaces, because their
purpose is to expand the reach of a single computing unit, both enhancing the inputs of a
personal computer with distributed physical buttons, and in outputs, using projections to expand
the reach of the screen in space. Of course, this is just the first step towards the creation of
engaging interactions in space. Most of the time designers want to enable more complex
sensing capabilities and more actuations beyond projections. In fact, actuation expands beyond
pixels using motors, lights, relays, etc.

The complexity of prototyping these experiences is proportional to the expensive palette of
sensors and actuators.

A simple approach in creating an interactive space, like the one described above, will be to
consider every element of the system as just a set of inputs of sensors and actuators, while the
central logic is confined in just one single place.

If recalling the above example, it is possible to imagine that at the beginning of the project
the designer wants to test their initial concept at scale, or he wants to check that all the stages
that have been graphically developed are cohesive and make sense in their logical flows.

There are different low-fi approaches (WOZ, Wizard of Oz) that we can use today that will
allow testing these at scale, involving presentation software and manual actuation.

These approaches are great, fast to implement, and do not require the creation of software.
They are, on the other side, limited and imprecise, and most of the time they do not convey an
experience similar enough to the final one. Here is where Tramontana can excel instead.

In fact, the designer-developer could, in a matter of hours, open the Tramontana receiver
software, to transform any device (tablet, smartphone, personal computer, or electronics board)
in a set of inputs and outputs, and from a centralized CPU implement a basic logic that
orchestrates all the pieces. The Tramontana software could pilot the content of a projection,
multiple screens, or physical led lighting. To do that a designer-developer can rely on the
Tramontana receiver software and the Tramontana library.

The Tramontana receiver software runs on tablets, smartphones, personal computers, or
custom electronic-boards that are running the ad-hoc Tramontana implementation. The

92 | Prototyping Spatial Interactions doi:10.53136/979125994120639

DigitCult | Scientific Journal on Digital Cultures

Tramontana receiver software is distributed in form of an app, and it is available on the major
app stores for different platforms like Android, iOS, macOS, and tvOS. The Tramontana board
instead is pre-loaded with the Tramontana receiver software.

The Tramontana library, instead, is a framework for creative coding platforms, like
openFrameworks, Processing, or JavaScript. Functionally a sketch in any of these creative
coding platforms with the Tramontana library is the master-mind where all the logic is created.
The centrally controlled logic keeps a connection with all the other devices running the
Tramontana receiver software, and each of those can be used as input or output as desired.

So, within the sketch, a designer can create links to every single node that needs to play a
part in the experience.

import tramontana.library.*;

Tramontana node1;

void setup(){

 node1 = new Tramontana(this,"192.168.1.3");

}

void mousePressed(){

node1.makeVibrate();

}

In the simplest sketch possible the Tramontana library is imported in the desired language

(Java/Processing in the example above) and a software object of class Tramontana is the

interface to access an external device running the Tramontana receiver software. This software
object (referred to as node-link object) is the interface for the designer to act on the node,
changing the behavior of the output or reading sensor data from the external device.

At runtime, the node-link object is initialized, opening the connection with the physical node,
reading a parameter that informs the library of the IP address of the device running the
Tramontana receiving software.

In the background, Tramontana creates a network link between the node and sketch that
the designer does not need to be knowledgeable about. The designer creates the logic in one
single location, the sketch, without any need to create any custom software for the nodes that
are simply acting like inputs or outputs of the master-mind, the sketch.

The node-link object exposes the actuation provided by the node, the physical device; for
example, if the node is a smartphone the actuation that are possible are:

• manipulate the screen content;

doi:10.53136/979125994120639 Pierluigi Dalla Rosa | 93

DigitCult | Scientific Journal on Digital Cultures

• display media (audio, video, images);

• actuate the vibration motor;

• turn on and off the camera’s flashlight.

The Tramontana hardware board is a different kind of board and allows a different kind of
actuation, like:

• setting relays on and off;

• changing the rotation of a servo motor;

• manipulate the color of a led strip.

In the case of prototyping Rain Room, a designer-developer could seek in Tramontana an
essential toolkit to start exploring spatial interactions, like motion and movement. A designer-
developer in fact could swiftly connect up to 4 relays on a single Tramontana board to stop or
activate the downpour without needing any embedded software.

The Tramontana board can act as a sensor as well. In the case of Rain Room, a designer
could connect a motion sensor directly to the Tramontana board and access that via the
Tramontana library.

To perform the sensor reading Tramontana conforms to standardized ways to capture a
system call or input event.

Tramontana uses the same paradigm and syntax used for listening to the key pressed or
mouse events in the available platforms.

In the case of a smartphone, the smartphone itself can be seen as a sensor:

• touch screen;

• accelerometer and gyroscope;

• camera;

• microphone;

• distance sensor;

• audio jack;

• power socket connected/disconnected.

import tramontana.library.*;

Tramontana t;

void setup(){

t = new Tramontana(this,"192.168.1.18");

 t.subscribeAttitude(5);

}

void onAttitudeEvent(String ipAddress, float newRoll, float newPitch,

float newYaw)

{

 …

}

void mousePressed()

{

 …

}

Following standard syntax and abstracting different computing units to unified logic,

Tramontana reduces the technical complexity and allows the implementation of a prototype to
follow the behavior of the installation, helping the designer to follow what is important the
experience.

Through high-level logical steps instead of an engineering endeavor, it is possible to
construct the state machine of the installation or interactive space. The distributed nature of
spatial computing is hidden by the Tramontana framework and each device running the

94 | Prototyping Spatial Interactions doi:10.53136/979125994120639

DigitCult | Scientific Journal on Digital Cultures

Tramontana receiver software is synchronized via network on behalf of the designer-developer
without requiring complicated setups and it minimizes the debugging time.

In short, Tramontana makes it possible to sketch an interactive experience to test the
concepts, before worrying about implementation.

Hardware Platform

Personal digital devices, like smartphones and tablets, are convenient to use for the purpose of
prototyping because they are already in the pockets of most, and devices can be great in
simulating, not only digital experiences but physical ones as well; in interactive spaces, the
distribution of one or more devices can already give the perception of spatiality and those are
great to simulate the pressing of a button or the triggering of a light.

To achieve a higher level of fidelity a hardware board can be plugged into the Tramontana
ecosystem.

Tramontana’s hardware platform is a WiFi-enabled board that ships with a firmware that
handles a protocol to interact with the Tramontana library. The hardware board has an onboard
RGB LED, a light sensor, and a set of pre-defined connectors that can be used to control simple
hardware components.

The actuators that can be connected are a light strip, two concurrent servo motors, and
space for four relays. The sensors available to the plugin are a motion sensor (PIR sensor), two
buttons, and two generic analog inputs.

The software syntax to interact with the Tramontana hardware board appears to be exactly
the same as other devices, the Tramontana library, in fact, keeps track of the nodes that are
connected. Every Tramontana device has different characteristics, for example, a smartphone
running the Tramontana receiving software will be able to pilot different inputs and outputs then
the hardware board running the embedded flavor of the receiving software. The Tramontana
library keeps track of the kind of device connected and notifies the designer if a wrong set of
commands is sent to a wrong node-link object. For example, if a node-link object connects to a
hardware board and the user invokes a method to trigger the haptic motor, the platform will
notify that the connected device is not able to process that command (reserved for
smartphones).

TramontanaCV

The mechanisms that allow Tramontana library to connect to different devices, can be utilized to
work for a specific use case that is particularly important when working in the field of spatial
computing. Understanding people’s positioning in space is an important part of the prototyping
and creating interactive spaces and it is one of the main barriers when testing interactions in
space. TramontanaCV is a specialized node that has the aim of sensing people in space using
computer vision. TramontanaCV includes an interface that allows the designer to harness the
GUI, camera, and computing power of a smartphone to perform blob tracking and stream just
the relevant information to the Tramontana library.

Within the centralized logic, the information regarding users' position can influence the
behavior of the interactive space.

TramontanaCV is just another set of inputs for the interactive system and the syntax, in this
case, is compliant with traditional inputs; the software interface to access the data, in fact,
follows the same conventions as a keypress or any other Tramontana inputs.

void onBlobsReceived(LBlobsContainer c,int nBlobs, String ip){

…

}

void onBoundingBoxReceived(LBBoxContainer c, int nBlobs, String ip){

…

}

doi:10.53136/979125994120639 Pierluigi Dalla Rosa | 95

DigitCult | Scientific Journal on Digital Cultures

An Example of Prototyping Spatial Interactions

A car cockpit is becoming an interactive space filled with digital features and the passenger
experience is more and more taken into account.

Let us consider the design of the car system that manages an incoming phone call and let
us imagine that the designer identified that each passenger in this scenario should have the
means of answering the call. The car notifies the passengers with ambient light and sound of
the incoming call and displays the name of the caller on the screen used for the radio. Every
passenger has an interface with which they can answer and subsequently terminate the call.

At this stage, the designer is faced with the challenge of prototyping the system.
Traditionally the process will involve wiring physical ambient lighting, creating intelligence on
different computing units to synchronize the state machine that takes into account the state of
the call (idle, call incoming, call in progress, call terminated), connecting the buttons for each
passenger with a serial communication protocol.

With the methodology described in this paper, it is possible to skip most of the time
consuming and complex steps in this prototype.

The designer architects all the intelligence within one sketch, taking 4 different smartphones
running Tramontana, nodes, and listens to the press of a node’s touch screen as the interface
for answering and hanging up the call. The screen of another smartphone or tablet could serve
as the screen for the audio system where the name of the caller will be displayed. To simulate
the incoming call a Tramontana board will activate the onboard ambient lights, and an audio cue
can be played by every single node in the space. Every button is now active and ready to listen
to the user's action to answer the call. When the call is ongoing every button can be used to
hang up. When any of the nodes is triggered, the call is terminated and all the nodes are reset
to an idle mode.

All of these interactions and behaviors are managed by the designer in the sketch with a
few lines of code and a clear mental model of how the prototyping system behaves, without the
need for deep expertise in networking, state machines, or electronics.

With the Tramontana ecosystem, the designer can test the experience of spatial computing
environments in a very short time and can swap, change and iterate with extreme ease, making
the process faster, more iterative, and ultimately more effective.

96 | Prototyping Spatial Interactions doi:10.53136/979125994120639

DigitCult | Scientific Journal on Digital Cultures

Conclusions

The most important concept behind Tramontana is its architecture. The Tramontana ecosystem
centralizes the logic of a complex computing system in one location, a code sketch running the
Tramontana library while keeping multiple inputs and outputs distributed and physically
detached from the central logic without adding significant complexity to the system. The
ecosystem is extensible thanks to its flexible structure and can host new smart nodes, as
demonstrated by the addition of TramontanaCV. In fact, nodes can benefit from onboard
processing power to execute distributed tasks like computer vision and machine learning. Doing
so will be functional to design more complex systems and will enable new interaction
opportunities like pattern recognition, pose tracking, identity, and more.

On a different level, the Tramontana ecosystem can be expanded with new generic devices,
like smartwatches (not yet supported), or with custom devices built for a specific application.
Both custom and consumer devices can be part of the Tramontana ecosystem if they conform
with the universal Tramontana API and follow the standardized socket's protocol that connects
devices to the Tramontana library. These new additions will be no different conceptually than
any previous work on the platform and will allow new explorations and possibilities in the field of
ubiquitous computing and spatial interactions.

Another area of investigation is the central logic, or the sketch, that at the moment of writing
is a program, written within a pre-existing creative coding platform, that uses the Tramontana
library. In the future, the logic for a spatial computing system can live within a flow-based
programming environment, where the logic is not bound to code and can be made even more
accessible (Morrison 2010).

The prototyping stage is crucial in the interaction design practice, and while there are many
tools that help in the prototyping phase for mobile and web applications, there are very few that
are tailored to the emerging field of spatial interactions.

This paper highlights a new way of approaching the prototyping stage in the design of
spatial computing systems, allowing the designer to skip complicated steps when approaching
the introductions of digital touch-points in prototypes, and allowing the designer to focus on the
experience instead of the technology. In the practice of interaction design, it is also essential to
understand the digital materials, and prototyping tools are great entry points to explore
possibilities and gather inspiration. The Tramontana ecosystem allows not only to create quick
prototypes but also allows designers to explore, with low entry barriers, the creation of spatial
computing systems; in doing so designers build new practical knowledge and nurture inspiration
without the burden of the mental complexity and time-consuming execution of computer science
techniques that they will require otherwise.

References

Banzi, Massimo, and Michael Shiloh. Getting Started with Arduino. Sebastopol, CA: Maker
Media, 2014.

Buxton, William. Sketching User Experiences: Getting the Design Right and the Right Design.
Amsterdam: Elsevier, 2011.

Collier, Bruce. The Little Engines That Could've: The Calculating Machines of Charles Babbage.
Accessed October 10, 2018. Available at http://robroy.dyndns.info/collier/

Goldstine, Herman H. The Computer from Pascal to Von Neumann. Princeton University Press,
1993.

Greenfield, Adam. Radical Technologies: The Design of Everyday Life. London: Verso, 2018.

Houde, Stephanie, and Charles Hill. “What Do Prototypes Prototype?” Handbook of Human-
Computer Interaction (1997): 367-81. doi:10.1016/b978-044481862-1.50082-0.

http://robroy.dyndns.info/collier/

doi:10.53136/979125994120639 Pierluigi Dalla Rosa | 97

DigitCult | Scientific Journal on Digital Cultures

Ishii, Hiroshi, and John Underkoffler. Luminous Room/Urp. 1996. Available at:
https://www.media.mit.edu/projects/luminous-roomurp/overview/

Lathan, Corinna E., and Geoffrey Ling. “Spatial Computing Could Be the Next Big Thing.”
Scientific American (November, 2020). Available at:
https://www.scientificamerican.com/article/spatial-computing-could-be-the-next-big-thing/

Moggridge, Bill. Designing Interactions. Cambridge, MA: MIT Press, 2006.

Morrison, J. Paul. Flow-Based Programming: A New Approach to Application Development.
International Thomson Computer Press, 2010.

Noble, Joshua. Programming Interactivity. O'Reilly Media, 2012.

Verplank, Bill. Interaction Design Sketchbook. Accessed online October 9th, 2018. Available at:
https://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=797

Wired staff. “Negroponte.” Wired Magazine (6.12.98). Accessed online October 9th, 2018.
Available at https://www.wired.com/1998/12/negroponte-55/

https://www.media.mit.edu/projects/luminous-roomurp/overview/
https://www.scientificamerican.com/article/spatial-computing-could-be-the-next-big-thing/
https://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=797
https://www.wired.com/1998/12/negroponte-55/

