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Abstract 
Artificial intelligence (AI) deep learning protocols offer solutions to complex data processing and 
analysis. Increasingly these solutions are being applied in the healthcare field, most commonly in 
processing complex medical imaging data used for diagnosis. Current models apply AI to screening 
populations of patients for markers of disease and report detection accuracy rates exceeding those of 
human data screening. In this paper, we explore an alternate model for AI deployment, that of monitoring 
and analysing an individual’s level of function over time. In adopting this approach, we propose that AI 
may provide highly accurate and reliable detection of preclinical disease states associated with aging-
related neurodegenerative diseases. One of the key challenges facing clinical detection of preclinical 
phases of diseases such as dementia is the high degree of inter-individual variability in aging-related 
changes to cognitive function. AI based monitoring of an individual over time offers the potential for the 
early detection of change in function for the individual, rather than relying on comparing the individual’s 
performance to population norms. We explore an approach to developing AI platforms for individual 
monitoring and preclinical disease detection and examine the potential benefits to the stakeholders in 
this technological development.  
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Artificial Intelligence in Healthcare – From the Present to the Future 

Artificial intelligence (AI) is an umbrella term that refers to computers, robots, and software that 
mimic aspects of human intelligence. AI is of increasing importance in the healthcare sector. A 
key driver in the increase in AI-based data-driven healthcare is the need for the global healthcare 
industry to reduce costs and more efficiently manage resources while improving patient care. In 
addition, the increasing prevalence of chronic diseases, aging populations, changing consumer 
expectations about how they want to purchase and receive care, and increasing access to social 
media and mobile technologies are transforming the way healthcare is obtained and delivered. In 
fact, there are already several examples of AI applications developed for healthcare, with the 
number of startups entering the healthcare AI space increasing in recent years, with over 50 
companies raising their first equity rounds since January 2015. Deals to healthcare-focused AI 
startups increased from less than 20 in 2012 to nearly 70 in 2016. In 2016 two new unicorns 
emerged into the space: China-based iCarbonX and oncology-focused Flatitron Health (CB 
Insights 2017). 

One of the many advantages of AI is that decisions made by AI are evidence-based and 
devoid of emotional influence and cognitive biases. This differentiates AI decision-making 
processes from human decision making processes which incorporate an inherent 
intuitive/emotive component in formulating a response. Instead, for the AI system, intuitive-
thinking is a product of the analysis of past behaviors of its user and large data sets. In order to 
implement AI into the healthcare industry there is a need for healthcare organizations to become 
data-driven, treating data as strategic assets and implementing processes and systems to inform 
decision-making procedures and drive actionable results. 

Data gathering for machine learning and deep learning capabilities have immense potential 
to improve diagnostics, care pathway creation and reproducibility in surgical procedures to 
ultimately achieve better clinical outcomes. For example, deep learning can involve the use of 
wearable technology targeted to specific conditions, such as remote monitoring of cardiac 
function of an individual, using individually-tailored algorithms derived from the individual’s 
biometric and patient data. The utilization of machine learning principles can advance the analysis 
of the unstructured data delivered from these medical-grade wearable devices to clinically 
relevant diagnostic information, with mathematical algorithms trained to detect anomalies in this 
data. Machine learning-based decision support systems could then interpret the meaning of 
anomalies, in a way similar to an expert human physician, resulting in a considerable saving in 
physician time that would otherwise be expended in processing unstructured data. As such, AI 
based platforms undertaking high level analysis of unstructured data enables the healthcare 
professions to focus on treatment delivery to the most critical patients and streamline the care 
process. According to a new research report (MarketsandMarkets Analysis 2017), the worldwide 
market is expected to grow from USD 667.1 Million in 2016 to USD 7,988.8 Million by 2022, at a 
CAGR of 52.68% during the forecast period. Another report, slightly more conservative in its 
modelling, is nonetheless indicating that the growth in the AI health market is expected to reach 
USD 6,600 Million by 2021, which represents a 40% compound annual growth rate (Collier, Fu, 
and Yin 2017). 

Current approaches to integrating AI platforms into disease modelling mainly undertake a 
traditional disease focused approach. Instead, AI could be a potential solution to the medical 
scientific challenge of detecting preclinical neurodegenerative disease by deep learning protocols 
to develop population based screening of disease states. Automatic detection of preclinical 
diseases from a multitude of sensors presents several challenges to traditional machine learning, 
yet would be in line with the future of AI in medical technology: that of individuated monitoring and 
intervention. 
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Neurodegenerative Disease: The Current Challenge in the Diagnosis  
and Detection of Preclinical Phases 

Neurodegenerative diseases encompass a cluster of hereditary or sporadic conditions 
characterised by degeneration of central and/or peripheral neural tissue. There are over 600 
known human neurodegenerative diseases of different aetiologies and trajectories, with some 
being terminal conditions with few treatment options. The majority of cases of neurodegenerative 
disease are a result of dementia, of which there are at least 50 different known variants. The most 
prevalent neurodegenerative disease is Alzheimer’s Dementia (AD) (Alzheimer's Association 
2017), with other relatively common neurodegenerative disorders including Vascular Dementia 
(VaD), and Parkinson’s Disease (PD). An estimated 10% of adults aged 65 years and older have 
AD, with the prevalence of AD increasing with age (17% of 75-84 yr olds; 32% o 85+ yr olds) 
(Alzheimer's Association 2017). 

A major challenge in the field of neurodegenerative diseases is early and timely diagnosis of 
the disease. For the majority of neurodegenerative diseases the underlying causal agent for the 
disease remains unknown. Consequently, there are no definitive biologic tests to detect the 
presence or absence of the disease in vivo. The in vivo (ante-mortem) diagnosis of aging-related 
neurodegenerative diseases (dementias, etc.) is made on the basis of the presence of hallmark 
clinical features, encompassing loss of functional capacity alongside recognised clusters of 
cognitive, physical, social, and/or mood disturbances (McKhann et al. 2011). In the case of 
Alzheimer’s dementia, loss of capacity to maintain independent living (functional impairment) with 
progressive deterioration of memory (new learning as well as access to old information), language 
processing (typically fluent aphasic conditions), spatial orientation, and executive functions 
(attention, concentration, decision-making, planning) are characteristic clinical symptoms of AD 
(McKhann et al. 2011, Alzheimer's Association 2017).  

These clinically diagnosed cases are associated with post-mortem neuropathology. In the 
case of AD, the presence of neurofibrillary tangles and senile plaques are considered pathological 
hallmark features (Braak and Del Tredici 2012). However, plaques and tangles are not unique to 
AD and are evident in normal aging as well as in other age-related diseases – the hallmark feature 
for AD is the distribution and density of the plaques and tangles. Further, not all cases with post-
mortem pathology consistent with AD display ante-mortem clinical symptoms of AD (Mufson et al. 
2016). That is to say, plaques and tangles reflect the consequence of a disease agent and are 
not the disease agent (Drachman 2013, Hardy and De Strooper 2017). The past 20 years has 
seen an increase in the use and development of imaging techniques and biomarker assessment 
of potential ante-mortem disease markers for AD. These include MRI imaging (e.g., hippocampal 
volumetric analysis), amyloid binding in PET imaging, functional activation changes on fMRI, beta-
amyloid load in CSF, etc. To date, none of these techniques has displayed sufficient sensitivity 
and specificity to reach the threshold required for early diagnosis of AD (McKhann et al. 2011). 
Therefore, the clinical diagnosis of AD remains based on clinical symptomatology, with biomarkers 
and imaging providing exclusionary/confirmatory diagnostic information. 

With this lack of knowledge regarding the causal agent(s) for AD, an effective treatment for 
the disease AD will remain elusive. Pharmacological treatments currently being developed and 
tested predominantly target the biochemical pathways associated with accumulation of the 
properties of tangles and plaques (i.e., beta-amyloid deposition), without targeting the trigger for 
this deposition. At best, these approaches may offer treatment of the symptoms of AD without 
treating the disease itself. However, recent clinical trials of initially promising drugs to reduce beta-
amyloid load have returned disappointing or negative treatment effects resulting in the cessation 
of the majority of clinical trials (Abbott and Dolgin 2016, Hardy and De Strooper 2017). 

In the past 15 years there has been a resurgence in the attempt to identify preclinical markers 
of diseases such as AD. The most recent attempt includes the notion of mild cognitive impairment 
(MCI) initially identified by the Mayo Clinic on the basis of a cohort study tracking adults into AD 
(Petersen et al. 1999). The Mayo Clinic study identified that prior the emergence of clinical 
symptoms of AD, subclinical decline in memory was observed in those that subsequently 
developed AD (Petersen et al. 1999). Similar findings have been found around the world, 
increasing interest in the detection of MCI as a preclinical phase of AD. More recent research has 
highlighted problems with the sensitivity and specificity of MCI, with longitudinal studies of 
populations identified as suffering from MCI reporting that up to 40-70% of MCI cases tracked 
longitudinally return to an unimpaired state, indicating that MCI lacks validity as a preclinical AD 
diagnosis (Summers and Saunders 2012, Klekociuk et al. 2014, Delano-Wood et al. 2009, 
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Edmonds et al. 2015, Edmonds et al. 2016). Increasingly, researchers are acknowledging that 
MCI represents a risk factor for AD and not a diagnostic marker for preclinical AD. 

The example provided here of the challenges facing detection and diagnosis of AD and the 
impact that this poses with the detection and diagnosis of preclinical disease states such as MCI 
affects the majority of the age-related neurodegenerative diseases. The conundrum is self-
evident; in the absence of a known causal agent for a disease, the capacity to diagnose the 
disease is dependent solely on the validity and accuracy of the clinical features of the disease 
and not the presence or absence of a disease causing agent. The signs and symptoms of a 
clinical disease state are dependent on the homogeneity of the population with the disease; 
variability in symptomatology or underlying causal agents decreases diagnostic accuracy of the 
clinical signs and symptoms. Therefore, the clinical diagnosis of AD is dependent on two key 
assumptions: 

1. There is a universal common causal agent for the disease – if the syndrome (e.g. AD) 
has multiple causal agents, then it is likely that the clinical diagnosis of AD is not a disease 
specific diagnosis but captures different diseases with similar clinical symptoms; 

2. That all persons with the disease display the same clinical signs and symptoms. There is 
increasing evidence of variability in symptom presentation and temporal changes in 
symptomatology in persons with a clinical diagnosis of AD. 

Longitudinal studies of aging indicate considerable variability in the trajectories of functional 
change over time (see Figure 1) (Finkel, Ernsth-Bravell, and Pedersen 2015, Ylikoski et al. 1999). 
Typically, longitudinal studies address this variability by computing group averaged trajectories 
based on outcome, such as normal aging versus dementia as an outcome (see Figure 2). 
However, a group averaged trajectory masks the underlying variability, which when recognised 
highlights the discrepancy between the change over time of an individual’s level of cognitive 
function compared to a group averaged trajectory of cognitive decline. 

 
 
 
 

 

Figure 1. Individual trajectories of functional decline in aging over time. 
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Figure 2. Outcome group averaged decline trajectories. 

Thus, detection of preclinical disease states is extremely challenging where the disease agent 
remains unknown and may be multifactorial, where symptomatology of the clinical disease state 
is variable, and where the signs and symptoms of the clinical disease state are not necessarily 
manifest in the pre-clinical stages (otherwise clinical disease criteria would be met), and where 
diagnostic criteria lack adequate sensitivity and specificity due to multiple statistical challenges 
(Klekociuk, Saunders, and Summers 2016). Current preclinical models are derived from 
identifying common signs and symptoms in subpopulations who subsequently develop the clinical 
disease state of interest, but these represent potential risk factors and not diagnostic features 
(Klekociuk, Saunders, and Summers 2016). 

AI as a Potential Solution to the Challenge of Detecting  
Preclinical Neurodegenerative Diseases 

Current approaches to integrating AI platforms into disease modelling undertake a traditional 
disease focused approach (Woo et al. 2017). Typically, this approach: 

1. is based on the premise of isolating new methods to identify disease states in population 
cohorts – essentially using AI to process data from large data sets from the population 
and detect statistical deviancy (in patterns of data) against a background of normal 
variance. The statistically deviant patterns are then correlated against an outcome metric 
(e.g. disease state) to demonstrate efficacy of using AI to screen the general population 
for diseases (Figure 3). 

2. The goal of this approach is to identify individuals in the general population who display 
patterns of medical test results (etc) that indicate the presence of a disease state. 

The ultimate aim of current approaches is to replace existing methods (i.e., expert human 
screening) with an AI screener with lower error rate for detection. AI development in this field 
requires very large data sets for deep machine learning approaches to be implemented. A major 
constraint on deep machine learning is variance in the patterns being examined. In the case of 
detection of abnormal pathology markers in a population set, the main source of variance is inter-
individual variability, with additional sources of variance from variability in medical equipment (e.g. 
different in number and strength of the magnets used in MRI as well as the algorithms employed 
by the MRI software).  
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Figure 3. Artificial intelligence system to detect disease within a population. 

However, the current approach of population based screening cannot lead to AI detection of 
preclinical disease states due to fundamental conceptual issues: 

AI cannot diagnose a disease state independent of human bias. Clinical diagnoses are 
conceptual models developed through clinical practice that best describe the commonalities of 
signs and symptoms displayed by the majority of a subgroup of the wider population (the 
“afflicted”). It is important to note that there is variability in the signs and symptoms displayed by 
the afflicted, with the diagnostic criteria describing what the majority of the afflicted display. 
Therefore, AI pattern recognition can only identify a pattern of information that best matches the 
clinical diagnosis. The less precisely the clinical diagnosis matches the afflicted, the less 
accurately the AI will identify those with the disease state. 

The constructs of preclinical disease states are purely conceptual and based on the premise 
that a precursor to frank disease must exist. For the majority of the “diagnosis” of a preclinical 
disease is based on milder forms of the signs and symptoms associated with the clinical disease 
state (e.g. mild cognitive impairment as a preclinical state of dementia). However, there is no good 
scientific evidence supporting the validity of preclinical diagnostic criteria. 

The causal pathogenic agent of various neurodegenerative diseases (e.g. Parkinson’s 
disease, AD, Frontotemporal Dementia, etc.) remain unknown. Hence, clinical diagnosis is not 
made on the basis of a direct measure of the causal agent, but rather a presence of a cluster of 
signs and symptoms that may or may not relate to a common causal agent. There is increasing 
debate as to whether clinical diagnostic states (such as Parkinson’s dementia or AD) represent a 
homogenous disease; or rather represent a cluster of related diseases with different causal 
agents. That is, commonality of signs and symptoms does not necessarily indicate a common 
causation. 

Can AI Solve the Challenge of Detecting Preclinical  
Neurodegenerative Disease States? 

It is necessary to look beyond the use of AI deep learning protocols to develop population based 
screening of disease states and consider the future of AI in medical technology: that of individual 
monitoring and intervention. In this approach, a deep machine learning protocol is applied to a 
large dataset derived from a single individual. The volume of data is a direct product of continuous 
information collected from a single individual over an extended period of time. The volume of data 
required will be determined by the time taken for the AI deep machine learning protocol to learn 
and recognise patterns of data from a single person (Figure 4). 
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Figure 4. Artificial intelligence system to detect decline within an individual. 

 
The Artificial Intelligence Challenge to Detecting Individual Change over Time  

The modern AI methods often referred to as “deep learning” or “deep machine learning”, have 
been demonstrated to match or exceed human accuracy in classifying diseases such as: lung 
cancer (Yu et al. 2016) and brain gliomas (Ertosun and Rubin 2015) from tissue samples, breast 
lesions and pulmonary nodules from CT imaging (Cheng et al. 2016), Alzheimer’s disease from 
fMRI scans (Sarraf, Tofighi, and Alzheimer Disease Neuroimaging Initiative 2016) and MRI scans 
(Suk, Lee, and Shen 2017); and, skin cancers from photographs (Esteva et al. 2017). However, 
these methods are dependent on extremely large volumes of training data in order to reach a 
level of deep learning classification accuracy (see Figure 5). In the case of AI skin cancer 
detection, a total of 129,450 individual clinician-annotated photographs of skin cancers were 
required for AI training (Esteva et al. 2017). 

 
 

 

Figure 5. Deep learning training approach. 
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While the paradigm shift from massive labelled datasets for training supervised deep learning 
models to processing longitudinal data from individual patients represents a significant leap 
towards personalized screening and diagnosis of preclinical disease, there are several technical 
obstacles to be overcome for this idea to be feasible. Three major problems have to be solved in 
order to develop a system able to provide predictions in a reasonable time frame, without requiring 
the millions of labelled instances that traditional deep learning usually has access to: 

1. The curse of dimensionality: multidimensional data can make learning difficult, particularly 
as the presence of irrelevant features frequently conceals the presence of anomalies;  

2. The limited availability of data: modern deep neural networks function extremely well in 
settings with abundant labelled data points (famous examples such as Google’s Inception 
network have learned from tens of millions of instances), but are frequently inferior to 
other techniques when datasets are small. Indeed, it can be proven that no single method 
is optimal for all possible settings and data dimensions (no free lunch theorem); 

3. The difficulty of obtaining reliable labels: in the setting of longitudinal observation and 
screening for pre-clinical disease, reliable diagnosis by experts is both time consuming, 
expensive, and made more difficult by the lack of well-substantiated preclinical diagnostic 
criteria. 

A strong model performing well in a real-world setting would need to autonomously pick out 
relevant features/dimensions for recognizing anomalies and trends; be capable of learning from 
limited data from a single individual; and rapidly reduce false positives and false negatives from 
a handful of expert opinions. These issues preclude taking existing off-the-shelf deep machine 
learning models and applying these models to preclinical disease screening, irrespective of how 
well they work in domains with abundant and accurately labelled datasets.  

The field of anomaly detection has developed several methods for recognizing when a data 
stream or time series deviates from what is considered normal; from simple outlier detection 
methods based on a statistical model to the one class support vector machine (1-class SVM). 
However, all of these methods require a small number of reliable features, and break down in a 
high-dimensional setting where not all dimensions are relevant. The field of combining anomaly 
detection with dimensionality reduction methods to mitigate this problem is still in its infancy 
(Erfani et al. 2016). 

The focus of machine learning has recently shifted from supervised classification to 
unsupervised (no labelled instances) and semi-supervised learning (partially labelled instances), 
and several recent breakthroughs have yielded practically applicable methods such as deep auto-
encoders (unsupervised) or ladder networks (semi-supervised). However, these methods have 
been designed for “deep” (rich multivariate data source with narrow temporal distribution) and not 
“wide” (temporally distributed data sources) data; and they are not trivially applicable to lengthy 
time series from single patients. 

Finally, physiological and biological modelling make it possible to incorporate large amounts 
of prior expert knowledge into computational models, thus significantly reducing the amount of 
experimental data required to fit a reliable model. However, the fusion of powerful machine 
learning methods with hand-crafted physiological models, which could combine the advantages 
of both, has been neglected in existing literature (Madl 2017). 

In order to develop individuated AI monitoring, three approaches to deep-learning need to be 
built upon: 

 Unsupervised representation learning methods, adapted to longitudinal multi-sensor data 
from individual patients to tackle the curse of dimensionality (together); 

 Physiological / biological models with further constraints on the relevant dimensions by 
making use of expert feedback (Figure 6), in order to reduce the amount of data required 
for reliable learning, and combine prior scientific knowledge about a phenomenon with 
learning from raw data; 

 Semi-supervised learning methods which classify a large number of phenomena based 
on very few expert labels, as well as information-theoretic feature selection to reduce the 
dimensionality with expert labels, in order to tackle the difficulty of obtaining a large 
number of reliable labels (Figure 7). 
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Figure 6. Combining data-driven machine learning with human expertise. 

 

 
 

 

Figure 7. Semi-supervised machine learning. 

 

 
Outline of a Possible Artificial Intelligence System for  

Learning Preclinical Decline 

Early detection of preclinical decline is crucial for appropriate care and preventative measures, 
especially given the increasing incidence rates in an aging population. Although traditional tools 
providing insights into neurodegenerative diseases (such as brain imaging) are in general 
prohibitively expensive as population-wide screening measures, there exist cheap and ubiquitous 
sensors that can be used for this purpose do exist. However, no clear “biomarkers” in such 
consumer sensor data are known; markers of decline have to be autonomously acquired from 
individuals, in the longitudinal fashion outlined in the sections above. In practice, individuals will 
be constantly monitored along a number of dimensions (e.g., accelerometry, heart rate, SpO2, 
body temperature, voice / speech patterns, facial recognition of mood state, etc.), with consumer 
devices such as wearables or smart watches and smartphones equipped with the appropriate 
sensors.  
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In order to tackle the above-mentioned challenges associated with learning from such data, 
an unsupervised representation learning model (enhanced by physiological models) could 
combine multidimensional time series to a compressed feature space, in order to represent the 
vast majority of variance in the input data using a small number of relevant features, as well as 
reducing noise and irrelevant information. A good initial approach would be a deep unsupervised 
machine learning model such as a deep autoencoder. This will result in a concise representation 
space spanned by relevant dimensions acquired automatically from the input data, in such a way 
as to minimize reconstruction error.  

Such an unsupervised representation learning approach is well suited to deal with the curse 
of dimensionality, and may allow the autonomous discovery of "biomarkers" that correlate with 
aspects of preclinical decline. For example, frailty frequently leads to impaired autonomic control 
(Varadhan et al. 2009), a correlation which could be detected autonomously from heart rate data, 
as the variability in the inter-beat intervals is very likely to be one of the important features 
discovered by an unsupervised representation learning model. To exploit such representations 
beyond simple correlation with clinical variables, critical events (such as falls, arrhythmias, or 
even cardiac arrest) could be recognized by applying anomaly detection algorithms, which are 
designed to identify deviations from the usual signal. Thus, an anomaly detection model (Figure 
8) could operate on this compressed space, and identify detrimental trends or abnormal 
phenomena. Anomaly detection systems usually have a certain false positive rates, which have 
to be mitigated by a learning approach. To this end, identified abnormalities will initially be 
manually verified by clinicians, and the diagnostic information will feed back to the model, further 
constraining the feature space, and providing a semi-supervised learning signal (Figure 8). After 
a relatively short learning phase involving frequent supervision, such a system has the potential 
to acquire: (1) a compressed representation that can capture health states with a very small 
number of variables; (2) decision boundaries which accurately separates normal from potentially 
abnormal health states, and (3) physiological sub-models as part of the machine learning model 
which, apart from reducing the amount of training data required for reliable learning, may also 
provide crucial insights to clinicians in the future (Figure 9). 

 
 
 

 

Figure 8. Detecting decline as a time series in a learned representation. 
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Figure 9. Potential AI architecture. 
 
 
Previous research has demonstrated representation learning with little supervision enables 

AI platforms to learn and predict the structure of more than 250 human spatial memories (Madl, 
Franklin, Chen, Trappl, et al. 2016) and enabled a humanoid robot to learn spatial memories with 
an accuracy comparable to humans (Madl, Franklin, Chen, Montaldi, et al. 2016). AI models 
combining machine learning with physiological models have been used to detect stable coronary 
artery disease from inter-beat intervals (Madl 2016, 2017). 

 
Impacts & Implications for the Stakeholder 

AI has the potential to exert a major impact on healthcare provision for the stakeholder. The 
impacts are likely to be experienced on both diagnostic processes as well as the human workload 
for the provision of healthcare services. Examples of the potential for significant impact come from 
case studies of the use of AI in the areas of health documentation and adherence.  

The need of support by ICT systems in healthcare is very clear. Worldwide, there is a 
population shift occurring, arising from improved healthcare in early life, the average of age of 
mortality is progressively shifting to later age groups over time. The pattern evident in changes to 
mortality in the Brussels region of Belgium (Figure 10) is replicated across most industrialized 
societies. However, it is important to note that an increase in lifespan does not necessarily indicate 
a commensurate increase in health levels within these populations. It is possible that with 
advancing age there is an increase in health-related problems that further add to the burden of 
care for the stakeholder. 
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Figure 10. Mortality rate within age bands at different years for the region of Brussels, Belgium. 

 
AI can directly contribute to the enhancement or improvement of several aspects of 

healthcare. For example, it can assist staff operating in high pressure environments, such as 
intense or prolonged working hours in situations requiring rapid critical decisions, by providing 
additional information for supporting routine decisions. Furthermore, an AI system can prove 
valuable when used for providing diagnostic options, as an AI platform can support decisions and 
identify changes in health status using evidence-based heuristics, where expensive diagnostic 
equipment is not available. Sensors can be deployed to provide data to the AI system to identify 
and monitor medication effects (adverse and desired) as well as monitor various behaviors. This 
can help in early risk detection, disease monitoring and therapy adjustment. AI can also help in 
increasing effectiveness in documentation and control of interventions. The benefits for end users 
include being able to monitor progress and enable basic data analysis. This data in turn can assist 
in raising awareness and combating physical or mental decline. 

Metadata can be used to gain information on the time users spent interacting with the AI 
system (for example time spent walking, data added manually by an end user, time spent on 
exercises that aim to improve physical and mental wellbeing). Furthermore, it provides a long-
term and ongoing monitoring tool compared to caregiver monitoring in which the patient may only 
be monitored sporadically or intermittently (once, twice, perhaps thrice a day). An AI system (for 
example on a mobile device with some additional sensors) can be customized to act (through a 
predefined prompt) and react (for example a predefined prompt when an individually defined heart 
rate is reached) to the needs of each end user and allows for monitoring throughout the day, 
regardless of whether the caregiver is currently present or not.  

 

Documentation 

At present, clinical documentation procedures account for approximately 15.8% of workload time 
for nurses (Korst et al. 2005). Of this 15.8%, a total of 10.6% is performed using paper-based 
recording systems. Over the coming years a reduction in paper-based records will occur as most 
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healthcare systems increasing deploy electronic-health record (EHR) systems, which has the 
potential to decrease the overall time required to perform and maintain healthcare documentation. 
The reduction in documentation time has the capacity to create additional staff time for clinical 
patient care which is an increasing demand on clinical staff workloads (e.g. because of inadequate 
staffing) (Neill 2011). Rather than using a centralized computer record system (Poissant et al. 
2005) the use of personal devices enabling documentation at the patient bedside is seen as the 
most effective replacement of current paper-based record systems.  

All data produced during the documentation process would be transmitted to the centralized 
record system and immediately available in the patient’s EHR of the hospital. This makes the 
transfer of paper based documents to the electronic system obsolete and decreases the chance 
for forgetting important details in the documentation when doing it later. 

 

Adherence 

Ease-of-use and a high level of individualization will be key to ensuring that end-users remain 
active system users over a long period of time. The AI system must be able to assist patients 
(directly or through medical staff) with good physical and/or mental health as well as users with 
poor physical and/or mental health. Further, the system must be adaptive, for example by 
recognizing a trend as such and adapting the relevant thresholds accordingly. A main challenge 
for this kind of system will be the personalization of motivational cues to increase adherence. If 
this is successful, the costs in healthcare will decrease dramatically for individuals with chronic 
diseases. Being able to monitor progress and present collected data in a user-friendly way should 
be able to encourage adherence in a similar fashion by increasing belief in self-efficacy. Examples 
for this can be found in diabetes care (Littlefield et al. 1992) and treatment of hypertension 
(Breaux-Shropshire et al. 2012). Compliance can similarly be encouraged through motivation and 
thus needs to be communicated in a supportive and encouraging way. 

 
Conclusion 

There is a clear need for novel solutions to mitigate aging-related diseases, which are known to 
have steadily increasing healthcare costs as well as significant but modifiable losses to quality-
adjusted life years. Artificial intelligence methods are beginning to make an impact on the 
healthcare sector, but have predominantly been used in settings characterized by clearly defined, 
distinct categories of health states (such as cancerous or non-cancerous tissue), as well as the 
availability of large amounts of data across many individuals. 

In this paper, we have argued for a fundamentally different approach: using AI models applied 
to large datasets derived from single individuals, in order to detect preclinical decline. We have 
summarized some of the systemic and technical challenges associated with this task, and outlined 
approaches to tackle them based on recent AI research and techniques, and their potential impact 
and implications. Future research, not limited to mainstream deep learning methods, will be 
required to arrive at mature solutions. 

 
  



22   |   DML Detection of Neurodegenerative Diseases DOI:10.4399/97888255088952 

DigitCult  |  Scientific Journal on Digital Cultures 

References 

Abbott, Alison, and Elie Dolgin. “Leading Alzheimer's theory survives drug failure.” Nature 540 
(2016): 15-16. 

Alzheimer's Association. “2017 Alzheimer's disease facts and figures.” Alzheimer's & Dementia 
13.4 (2017): 325-373. doi: http://dx.doi.org/10.1016/j.jalz.2017.02.001  

Braak, Heiko, and Kelly Del Tredici. 2012. “Alzheimer’s disease: Pathogenesis and prevention.” 
Alzheimer's & Dementia 8 (3):227-233. 

Breaux-Shropshire, Tonya L., Kathleen C. Brown, Erica R. Pryor, and Elizabeth H. Maples. 
“Relationship of blood pressure self-monitoring, medication adherence, self-efficacy, stage of 
change, and blood pressure control among municipal workers with hypertension.” Workplace 
Health & Safety 60.7 (2012): 303-311. doi: http://dx.doi.org/10.1177/216507991206000704  

CB Insights. “From virtual nurses to drug discovery: 106 artificial intelligence startups in 
healthcare.” CB Insights – Blog (2017). Accessed 20 June 2017. 

Cheng, Jie-Zhi, Dong Ni, Yi-Hong Chou, Jing Qin, Chui-Mei Tiu, Yeun-Chung Chang, Chiun-
Sheng Huang, Dinggang Shen, and Chung-Ming Chen. “Computer-aided diagnosis with deep 
learning architecture: Applications to breast lesions in US images and pulmonary nodules in 
CT scans.” Scientific reports 6 (2016): 244-254. doi: http://dx.doi.org/10.1038/srep24454  

Collier, M., R. Fu, and L. Yin. “Artificial intelligence: Healthcare's new nervous system.” Accenture 
(2017). Accessed 20 June 2017. 

Delano-Wood, Lisa, Mark W. Bondi, Joshua Sacco, Norm Abeles, Amy J. Jak, David J. Libon, and 
Andrea Bozoki. “Heterogeneity in mild cognitive impairment: Differences in 
neuropsychological profile and associated white matter lesion pathology.” Journal of the 
International Neuropsychological Society 15.6 (2009): 906-914. doi: 
http://dx.doi.org/10.1017/S1355617709990257  

Drachman, David A. “The amyloid hypothesis, time to move on: Amyloid is the downstream result, 
not cause, of Alzheimer's disease.” Alzheimer's & Dementia 10.3 (2013): 372-380. doi: 
http://dx.doi.org/10.1016/j.jalz.2013.11.003  

Edmonds, Emily C., L. Delano-Wood, A. J. Jak, Douglas Galasko, D. P. Salmon, and M. W. Bondi. 
“‘Missed’ MCI: False-negative errors based on conventional diagnostic criteria.” Journal of 
Alzheimer's Disease 52 (2016): 685-691. doi: http://dx.doi.org/10.3233/JAD-150986  

Edmonds, Emily C., Lisa Delano-Wood, Lindsay R. Clark, Amy J. Jak, Daniel A. Nation, Carrie R. 
McDonald, David J. Libon, Rhoda Au, Douglas Galasko, David P. Salmon, and Mark W. 
Bondi. “Susceptibility of the conventional criteria for mild cognitive impairment to false-positive 
diagnostic errors.” Alzheimer's & Dementia 11.4 (2015): 415-424. doi: 
http://dx.doi.org/10.1016/j.jalz.2014.03.005  

Erfani, S.M., S. Rajasegarar, S. Karunasekera, and C. Leckie. “High-dimensional and large-scale 
anomaly detection using a linear one-class SVM with deep learning.” Pattern Recognition 58 
(2016): 121. 

Ertosun, M. G., and D. L. Rubin. 2015. “Automated grading of gliomas using deep learning in 
digital pathology images: A modular approach with ensemble of convolutional neural 
networks.” AMIA Annual Symposium Proceedings (2015): 1899-908. 

http://dx.doi.org/10.1016/j.jalz.2017.02.001
http://dx.doi.org/10.1177/216507991206000704
http://dx.doi.org/10.1038/srep24454
http://dx.doi.org/10.1017/S1355617709990257
http://dx.doi.org/10.1016/j.jalz.2013.11.003
http://dx.doi.org/10.3233/JAD-150986
http://dx.doi.org/10.1016/j.jalz.2014.03.005


DOI:10.4399/97888255088952 Mathew J. Summers et al.   |   23 

DigitCult  |  Scientific Journal on Digital Cultures 

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and 
Sebastian Thrun. “Dermatologist-level classification of skin cancer with deep neural 
networks.” Nature 542.7639 (2017): 115-118. doi: http://dx.doi.org/10.1038/nature21056  

Finkel, Deborah, Marie Ernsth-Bravell, and Nancy L. Pedersen. “Sex differences in genetic and 
environmental influences on longitudinal change in functional ability in late adulthood.” The 
Journals of Gerontology Series B: Psychological Sciences and Social Sciences 70.5 (2015): 
709-717. doi: http://dx.doi.org/10.1093/geronb/gbt134  

Hardy, John, and Bart De Strooper. “Alzheimer’s disease: where next for anti-amyloid therapies?”  
Brain 140.4 (2017): 853-855. doi: http://dx.doi.org/10.1093/brain/awx059  

Klekociuk, S. Z., N. L. Saunders, and M. J. Summers. “Diagnosing mild cognitive impairment as 
a precursor to dementia: Fact or fallacy?” Australian Psychologist 51.5 (2016): 366-373. doi: 
http://dx.doi.org/10.1111/ap.12178  

Klekociuk, Shannon Zofia, Jeffery J. Summers, James C. Vickers, and Mathew J. Summers. 
“Reducing false positive diagnosis in MCI: The importance of comprehensive 
neuropsychological assessment.” European Journal of Neurology 21 (2014): 1330-1336. doi: 
http://dx.doi.org/10.1111/ene.12488  

Korst, L.M., A.C. Eusebio-Angeja, T. Chamorro, C.E. Aydin, and K.D. Gregory. “Nursing 
documentation time during implementation of an electronic medical record.” In Evaluating the 
Organizational Impact of Healthcare Information Systems, edited by J.G. Anderson and C.E. 
Aydin, 304-314. New York: Springer, 2005. 

Littlefield, Christine H, John L Craven, Gary M Rodin, Denis Daneman, Michael A Murray, and 
Anne C Rydall. “Relationship of self-efficacy and binging to adherence to  
diabetes regimen among adolescents.” Diabetes Care 15.1 (1992): 90-94. doi: 
http://dx.doi.org/10.2337/diacare.15.1.90  

Madl, T. “Network analysis of heart beat intervals using horizontal visibility graphs.” In 2016 
Computing in Cardiology Conference (CinC), 11-14 Sept. 2016. 

Madl, T. “Deep neural heart rate variability analysis.” In Neural Information Processing Systems 
– Machine Learning for Healthcare Barcelona, Spain (2017). 

Madl, Tamas, Stan Franklin, Ke Chen, Daniela Montaldi, and Robert Trappl. “Towards real-world 
capable spatial memory in the LIDA cognitive architecture.” Biologically Inspired Cognitive 
Architectures 16 (2016): 87-104. doi: http://dx.doi.org/10.1016/j.bica.2016.02.001  

Madl, Tamas, Stan Franklin, Ke Chen, Robert Trappl, and Daniela Montaldi. “Exploring the 
structure of spatial representations.” PLOS ONE 11.6 (2016): e0157343. doi: 
http://dx.doi.org/10.1371/journal.pone.0157343 

MarketsandMarkets Analysis. “Artificial Intelligence in Healthcare Market by Offering (Hardware, 
Software and Services), Technology (Deep Learning, Querying Method, NLP, and Context 
Aware Processing), Application, End-User Industry, and Geography – Global Forecast to 
2022.” 2017. Available at http://marketsandmarkets.com. 

McKhann, Guy M., David S. Knopman, Howard Chertkow, Bradley T. Hyman, Clifford R. Jack, 
Claudia H. Kawas, William E. Klunk, Walter J. Koroshetz, Jennifer J. Manly, Richard Mayeux, 
Richard C. Mohs, John C. Morris, Martin N. Rossor, Philip Scheltens, Maria C. Carrillo, Bill 
Thies, Sandra Weintraub, and Creighton H. Phelps. “The diagnosis of dementia due to 
Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s 
Association workgroups on diagnostic guidelines for Alzheimer's disease.” Alzheimer's & 
Dementia 7.3 (2011): 263-269. 

http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1093/geronb/gbt134
http://dx.doi.org/10.1093/brain/awx059
http://dx.doi.org/10.1111/ap.12178
http://dx.doi.org/10.1111/ene.12488
http://dx.doi.org/10.2337/diacare.15.1.90
http://dx.doi.org/10.1016/j.bica.2016.02.001
http://dx.doi.org/10.1371/journal.pone.0157343
http://marketsandmarkets.com/


24   |   DML Detection of Neurodegenerative Diseases DOI:10.4399/97888255088952 

DigitCult  |  Scientific Journal on Digital Cultures 

Mufson, Elliott J., Michael Malek-Ahmadi, Sylvia E. Perez, and Kewei Chen.  
“Braak staging, plaque pathology, and APOE status in elderly persons without  
cognitive impairment.”  Neurobiology of Aging 37 (2016): 147-153. doi: 
https://doi.org/10.1016/j.neurobiolaging.2015.10.012  

Neill, Denise. “Nursing workload and changing the health care environment.” Adminstrative 
Issues Journal: Education, Practice and Research 1.2 (2011): 132-143. 

Petersen, R.C., Glenn E. Smith, Stephen C. Waring, Robert J. Ivnik, Eric G. Tangalos, and Emre 
Kokmen. “Mild cognitive impairment: Clinical characterization and outcome.” Archives of 
Neurology 56.3 (1999): 303-308. 

Poissant, L., J. Pereira, R. Tamblyn, and Y. Kawasumi. “The impact of electronic health records 
on time efficiency of physicians and nurses: A systematic review.” Journal of the American 
Medical Informatics Association 12.5 (2005): 505-516. doi: 
http://dx.doi.org/10.1197/jamia.M1700  

Sarraf, S., G. Tofighi, and Alzheimer Disease Neuroimaging Initiative. “Deep learning-based 
pipeline to recognize Alzheimer's disease using fMRI data.” In 2016 Future Technologies 
Conference (FTC), 6-7 Dec. 2016. 

Suk, Heung-Il, Seong-Whan Lee, and Dinggang Shen. “Deep ensemble learning of sparse 
regression models for brain disease diagnosis.” Medical Image Analysis 37 (2017): 101-113. 
doi: https://doi.org/10.1016/j.media.2017.01.008  

Summers, Mathew J., and Nichole L. J. Saunders. “Neuropsychological measures predict decline 
to Alzheimer's dementia from mild cognitive impairment.” Neuropsychology 26.4 (2012):498-
508. doi: http://dx.doi.org/10.1037/a0028576  

Varadhan, R., P. H. Chaves, L. A. Lipsitz, P. K. Stein, J. Tian, B. G. Windham, R. D.  
Berger, and L. P. Fried. “Frailty and impaired cardiac autonomic control:  
new insights from principal components aggregation of traditional heart rate variability 
indices.” The Journals of Gerontology: Series A 64A.6 (June 2009): 682-687. doi: 
http://dx.doi.org/10.1093/gerona/glp013  

Woo, Choong-Wan, Luke J. Chang, Martin A. Lindquist, and Tor D. Wager. “Building better 
biomarkers: brain models in translational neuroimaging.” Nat Neurosci 20.3 (2017): 365-377. 
doi: http://dx.doi.org/10.1038/nn.4478  

Ylikoski, Raija, Ari Ylikoski, Pertti Keskivaara, Reijo Tilvis, Raimo Sulkava, and Timo Erkinjuntti. 
“Heterogeneity of cognitive profiles in aging: Successful aging, normal aging, and individuals 
at risks for cognitive decline.” European Journal of Neurology 6.6 (1999): 645-652. 

Yu, Kun-Hsing, Ce Zhang, Gerald J. Berry, Russ B. Altman, Christopher Ré, Daniel L. Rubin, and 
Michael Snyder. “Predicting non-small cell lung cancer prognosis by fully automated 
microscopic pathology image features.” Nature Communications 7 (2016). doi: 
http://dx.doi.org/10.1038/ncomms12474  

https://doi.org/10.1016/j.neurobiolaging.2015.10.012
http://dx.doi.org/10.1197/jamia.M1700
https://doi.org/10.1016/j.media.2017.01.008
http://dx.doi.org/10.1037/a0028576
http://dx.doi.org/10.1093/gerona/glp013
http://dx.doi.org/10.1038/nn.4478
http://dx.doi.org/10.1038/ncomms12474

